One from many

Scalar estimation in multiparameter contexts

Jonathan A. Gross, Carlton M. Caves

Center for Quantum Information and Control, University of New Mexico

Institut Quantique, Université de Sherbrooke

CQuIC balloon Creative Commons License NSF logo IQ logo

Models have free parameters

𝛉=(θ1,,θN)\mathbf{\theta}=(\theta^1,\ldots,\theta^N)

Estimates are always noisy

Cov(𝛉̂)\text{Cov}\left(\hat{\mathbf{\theta}}\right)

Fisher information reigns

Fjk=dxjPr(x|𝛉)kPr(x|𝛉)Pr(x|𝛉)F_{jk}= \int dx\frac{\partial_j\Pr(x|\mathbf{\theta})\,\partial_k\Pr(x|\mathbf{\theta})} {\Pr(x|\mathbf{\theta})}

Fisher information reigns

Cov(𝛉̂)F1\text{Cov}\left(\hat{\mathbf{\theta}}\right)\geq F^{-1}

How about a single number?

q=jqjBjq=\sum_jq_jB^j

Optimal and secure measurement protocols for quantum sensor networks, Zachary Eldredge, Michael Foss-Feig, JAG, S. L. Rolston, and Alexey V. Gorshkov, Phys. Rev. A 97, 042337 (2018)

How about a single number?

Identify θk\theta^k and calculate FkkF_{kk}, right?

Optimal and secure measurement protocols for quantum sensor networks, Zachary Eldredge, Michael Foss-Feig, JAG, S. L. Rolston, and Alexey V. Gorshkov, Phys. Rev. A 97, 042337 (2018)

WRONG!

You will calculate unattainable sensitivity goals.

You will construct estimators with unnecessary errors.

 

Parameters define tangent vectors

Fjk=dxjPr(x|𝛉)kPr(x|𝛉)Pr(x|𝛉)F_{jk}= \int dx\frac{\partial_j\Pr(x|\mathbf{\theta})\,\partial_k\Pr(x|\mathbf{\theta})} {\Pr(x|\mathbf{\theta})}

Functions define differential forms

q=θ1+12θ2q=\theta^1+\frac{1}{2}\theta^2

Parameters define conditioning

(Fkk)1(F_{kk})^{-1} bounds conditional variance

Functions define marginalizing

(F1)kk(F^{-1})^{kk} bounds marginal variance

Conditional isn’t marginal

(Fkk)1(F1)kk(F_{kk})^{-1}\neq(F^{-1})^{kk}

Quantum models define many distributions

H(𝛉)=jθjXjρ(𝛉)=eitH(𝛉)ρ0eitH(𝛉)Pr(x|𝛉)=tr[ρ(𝛉)Ex]\begin{aligned} H(\mathbf{\theta})&=\sum_j\theta^jX_j \\ \rho(\mathbf{\theta})&=e^{-itH(\mathbf{\theta})}\rho_0e^{itH(\mathbf{\theta})} \\ \Pr(x|\mathbf{\theta})&=\operatorname{tr}[\rho(\mathbf{\theta})E_x] \end{aligned}

Optimize over choices

θk2=maxρ0,{Ex}Fjj\Vert\theta^k\Vert^2=\max_{\rho_0,\{E_x\}}F_{jj}

Optimize over choices

θk2=maxρ0,{Ex}Fjj\Vert\theta^k\Vert^2=\max_{\rho_0,\{E_x\}}F_{jj}

Optimize over choices

θk2=maxρ0,{Ex}Fjj\Vert\theta^k\Vert^2=\max_{\rho_0,\{E_x\}}F_{jj}

We use norm to marginalize

Summary

Estimating a scalar function of many parameters is not a single-parameter problem.

Relationship of differential form dqdq to norm \Vert\cdot\Vert gives best sensitivity and optimal measurement (holds for arbitrary processes).

For more information on upcoming manuscript, see unm.edu/~jagross/blog