On pins and needles

The geometry of quantum measurements

Jonathan A. Gross, Carlton M. Caves

Center for Quantum Information and Control, University of New Mexico

CQuIC balloon Creative Commons License NSF logo

Geometry is important

Quantum inference requires optimization w.r.t. geometric constraints.

ρ^=argmaxρ0Pr(data|ρ)\hat{\rho}=\underset{\rho\geq0}{\mathrm{arg\,max}}\operatorname{Pr} (\mathrm{data}|\rho)

Qubits are trivial

ρ=12(1+𝐫𝛔)\rho=\frac{1}{2}(\mathbb{1}+\mathbf{r}\cdot\boldsymbol{\sigma})

ρ0𝐫1tr(ρ2)1\rho\geq0\,\Leftrightarrow\,\Vert\mathbf{r}\Vert\leq1\,\Leftrightarrow\, \operatorname{tr}(\rho^2)\leq1

Higher dimensions are complicated

tr(ρ2)1\operatorname{tr}(\rho^2)\leq1, 3tr(ρ2)2tr(ρ3)1\quad3\operatorname{tr}(\rho^2)-2\operatorname{tr}(\rho^3)\leq1

Bloch sphere becomes pointed!

Solid angle measures pointedness:

Ω=vol(ballstate-space)vol(ball)\Omega=\frac{\mathrm{vol}(\text{ball}\cap\text{state-space})} {\mathrm{vol}(\text{ball})}

Pointedness grows rapidly

JAG, Carlton M. Caves, Rank deficiency and the Euclidean geometry of quantum states, APS March Meeting A52.00002 (2017).

Pointedness is important

Gives valuable information about

  • Estimator bias
    Silva et al., Investigating bias in maximum-likelihood quantum-state tomography, Phys. Rev. A 95, 022107 (2016).
  • Optimization success probability
    Amelunxen et al., Living on the edge: Phase transitions in convex programs with random data, arXiv:1303.6672.

Fisher information dictates geometry

Fjk(ρ)=EPOVMtr(Ejρ)tr(Ekρ)tr(Eρ)F_{jk}(\rho)=\sum_{E\in\text{POVM}}\frac{\operatorname{tr}(E\partial_j\rho) \operatorname{tr}(E\partial_k\rho)}{\operatorname{tr}(E\rho)}

Fisher information dictates geometry

Fjk(ρ)=EPOVMtr(Ejρ)tr(Ekρ)tr(Eρ)F_{jk}(\rho)=\sum_{E\in\text{POVM}}\frac{\operatorname{tr}(E\partial_j\rho) \operatorname{tr}(E\partial_k\rho)}{\operatorname{tr}(E\rho)}

Quantify difference with condition number

κ=σmax2/σmin2\kappa=\sigma_{\mathrm{max}}^2/\sigma_{\mathrm{min}}^2

Have proved κ>1\kappa>1, but how much bigger?

Li et al., Fisher-symmetric informationally complete measurements for pure states, Phys. Rev. Lett. 116, 180402 (2016).

Case study: Qutrit

Measure a SIC POVM.

Case study: Qutrit

Evaluate Fisher information at 2142^{14} uniformly sampled pure states.

Condition numbers are large!

minκ=3\operatorname{min}\kappa=3

Condition numbers are large!

Ellipses at 25th and 75th percentiles

Ignoring stretching causes errors

Efficient method for computing the maximum-likelihood quantum state from measurements with additive Gaussian noise, Smolin et al., Phys Rev. Lett. 108, 070502 (2017).

Need to further quantify anisotropy

  • How does the excess MSE scale with dimension?
  • How does anisotropy affect pointedness?
  • How does anisotropy change with different measurements?