Fisher symmetry
and the geometry of quantum states
Jonathan A. Gross,
Amir Kalev, Howard Barnum, Carlton M. Caves
Center for Quantum Information and Control,
University of New Mexico
Statistical distance
Quantify distance between two quantum states by how statistically
distinguishable they are
More distinguishable: further apart
Less distinguishable: closer together
Example: coin bias
Statistical fluctuations
The fluctuations depend on the estimator used
The Cramér–Rao bound gives us an achievable lower
bound
This allows us to generally define our statistical distance in terms of the
Fisher information (FI)
Fisher information
F(p
)=
∑Outcomes
Pr
(outcome
|p
){
ddpln
[Pr(
outcome
|p)
]}2
=∑
Outcomes
[d
dpPr
(outcome
|p
)]
2Pr
(outcome
|p
)
\begin{align}
F(p)&=\sum_{\text{Outcomes}}\operatorname{Pr}(\text{outcome}|p)
\left\{\frac{d}{dp}\ln\Big[\operatorname{Pr}(\text{outcome}|p)
\Big]\right\}^2 \\
&=\sum_{\text{Outcomes}}\frac{\left[\frac{d}{dp}
\operatorname{Pr}(\text{outcome}|p)\right]^2}
{\operatorname{Pr}(\text{outcome}|p)}
\end{align}
The FI quantifies the information a random variable provides about a
parameter
Coin FI
Pr
(H
|p)
=p
F
(p)
=1
2p+
(−1)
21−p
Pr(T
|p
)
=1−
p
=1
p(1−p
)
\begin{align}
\operatorname{Pr}(H|p)&=p & F(p)&=\frac{1^2}{p}+\frac{(-1)^2}{1-p} \\
\operatorname{Pr}(T|p)&=1-p & &=\frac{1}{p(1-p)}
\end{align}
Kullback–Leibler divergence
D
(f∥
g):=
∫dxf
(x)
ln(
f(x
)g(
x)
)
\begin{align}
\mathcal{D}(f\Vert g)&:=\int dx\,f(x)\,
\ln\left(\frac{f(x)}{g(x)}\right)
\end{align}
Quantifies how likely you are to mistake one distribution for another (not
symmetric)
Locally it defines the same distance as the FI
D
(fp
∥f
p+δ
p)=
12δ
p2F
(p)
\begin{align}
\mathcal{D}(f_p\Vert f_{p+\delta p})&=\frac{1}{2}\delta p^2\,F(p)
\end{align}
Multiple parameters
Fjk
(
p)
=∑Outcomes
∂j
Pr(
outcome|
p
)
∂k
Pr(outcome
|
p
)Pr
(outcome
|
p
)
\begin{align}
F_{jk}(\mathbf{p})&=\sum_\text{Outcomes}
\frac{\partial_j\operatorname{Pr}(\text{outcome}|\mathbf{p})
\,\partial_k\operatorname{Pr}(\text{outcome}|\mathbf{p})}
{\operatorname{Pr}(\text{outcome}|\mathbf{p})}
\end{align}
This matrix can be used as a metric
ds∼
dp
T
F(
p
)d
p
\begin{align}
ds&\sim\sqrt{d\mathbf{p}^\mathsf{T}F(\mathbf{p})\,d\mathbf{p}}
\end{align}
Including quantum mechanics
Random variable defined by a positive-operator-valued measure (POVM),
{E
ξ}
\{E^\xi\}
Pr
(Ξ=ξ
|
x
)=
tr[E
ξρ
(
x)
]∑
ξE
ξ=I
\begin{align}
\operatorname{Pr}(\Xi=\xi|\mathbf{x})
&=\operatorname{tr}[E^\xi\rho(\mathbf{x})] & \sum_\xi E^\xi&=I
\end{align}
We write the FI generated by a particular POVM as
C
αβ
(
x)
=∑
ξtr
[Eξ
∂α
ρ(
x
)]
tr[
Eξ
∂β
ρ(
x
)]
tr[
Eξ
ρ(
x)
]
\begin{align}
C_{\alpha\beta}(\mathbf{x})&=\sum_\xi\frac{
\operatorname{tr}[E^\xi\partial_\alpha\rho(\mathbf{x})]
\operatorname{tr}[E^\xi\partial_\beta\rho(\mathbf{x})]}
{\operatorname{tr}[E^\xi\rho(\mathbf{x})]}
\end{align}
Measurement dependence
Measurement dependence
Measurement dependence
Measurement dependence
Gill–Massar bound
Assume Hilbert space of finite dimension
d
d
tr
[Q−1
C]
≤d−1
Qα
βC
α
β
≤d−1
\begin{align}
\operatorname{tr}[Q^{-1}C]&\leq d-1 &
Q^{\alpha\beta}C_{\alpha\beta}&\leq d-1
\end{align}
The bound is saturable
tr[
Q−1
C]=
d−1E
ξ=
|
ϕξ
⟩⟨
ϕξ
|
\begin{align}
\operatorname{tr}[Q^{-1}C]&=d-1 &
E^\xi&=|\phi^\xi\rangle\langle\phi^\xi|
\end{align}
R. D. Gill and S. Massar,
Phys. Rev. A
61, 042312 (2000)
Fisher symmetry
Can choose parameters so
Q
=IQ=I
.
Saturate GM bound:
∑jC
jj=
d−1
\sum_jC_{jj}=d-1
Fisher symmetry
Can choose parameters so
Q
=IQ=I
.
Saturate GM bound:
∑jC
jj=
d−1
\sum_jC_{jj}=d-1
Fisher symmetry
Fisher symmetry
CFS=
{
12Qpure
1d+
1Qfull rank
\begin{align}
C_\text{FS}&=\begin{cases}
\frac{1}{2}Q & \text{pure} \\
\frac{1}{d+1}Q & \text{full rank}
\end{cases}
\end{align}
Local tomography
Have device to prepare a target state
Local tomography
Want to measure deviations
Maximally mixed state: ✔
POVM is an FSM iff it is a 2-design
∑ξ
Eξ
⊗E
ξ
tr[E
ξ]
=1d+
1∑
j,k
(|
ej⟩
⟨ej
|
⊗
|ek
⟩
⟨ek
|
=1d+1
∑j
,k
(+
|
ej⟩
⟨ek
|
⊗
|ek
⟩
⟨ej
|
)
\begin{align}
\sum_\xi\frac{E^\xi\otimes E^\xi}{\operatorname{tr}[E^\xi]}
&=\frac{1}{d+1}\sum_{j,k}\Big(
|e_j\rangle\langle e_j|\otimes|e_k\rangle\langle e_k| \\
&\hphantom{=\frac{1}{d+1}\sum_{j,k}\Big(}
+|e_j\rangle\langle e_k|\otimes|e_k\rangle\langle e_j|\Big)
\end{align}
Examples: SIC-POVMs, MUBs, uniformly random basis
Qubits: ✔
Qubits: ✔
Qubits: ✔
Qubits: ✔
State-space geometry
Consider equatorial plane of the Bloch ball
As in the simplex case, Euclidean distance doesn't reflect statistical
distance
State-space geometry
Just like the simplex is naturally a semicircle, the Bloch ball is
naturally the upper hemisphere of
S
3S^3
Qubits: ✔
Symmetry of CFI
Consider tensor form of CFI
∑ξ
Eξ
⊗E
ξ
tr[E
ξρ
]
\begin{align}
\sum_\xi\frac{E^\xi\otimes E^\xi}{\operatorname{tr}[E^\xi\rho]}
\end{align}
This is invariant under the Choi isomorphism
|
ej⟩
⟨ek
|
⊗
|em
⟩
⟨en
|↔
|
ej⟩
⟨en
|
⊗
|em
⟩
⟨ek
|
\begin{align}
|e_j\rangle\langle e_k|\otimes|e_m\rangle\langle e_n|
&\leftrightarrow|e_j\rangle\langle e_n|\otimes|e_m\rangle\langle e_k|
\end{align}
Asymmetry of QFI
ρ=
∑j
λj
|ej
⟩
⟨ej
|
\begin{align}
\rho&=\sum_j\lambda^j|e_j\rangle\langle e_j|
\end{align}
For the QFI to be invariant under the Choi isomorphism, it must be that
λj+
λk
=2dj
≠k
\begin{align}
\lambda^j+\lambda^k&=\frac{2}{d} & j&\neq k
\end{align}
Only true for qubits and at the maximally mixed state
Higher dimensions: ✘
Need to find a new geometry in the higher-dimensional multiparameter
setting
Purity for CFI
Want as close to uniform accuracies as possible
Purity measures uniformity of eigenvalues
tr[
ρ2
]>
tr[
σ2
]
\begin{align}
\operatorname{tr}[\rho^2]&>\operatorname{tr}[\sigma^2]
\end{align}
New idea of symmetry
Analogous quantity for the CFI
tr
[Q−1
CQ
−1C]
=C
αβ
Cα
β
\begin{align}
\operatorname{tr}[Q^{-1}CQ^{-1}C]&=C^{\alpha\beta}C_{\alpha\beta}
\end{align}
Minimize the purity
of the CFI
{E
FSξ
}=
a
rg
m
in
{E
ξ
}C
α
βC
α
β
\begin{align}
\{E^\xi_\text{FS}\}&=\underset{\{E^\xi\}}{\operatorname{arg\,min}}
\,C^{\alpha\beta}C_{\alpha\beta}
\end{align}
What have we learned?
-
Limitations of strict symmetry requirements (or: why one should never
trust qubits)
Pure states | ✔ |
Maximally mixed state |
✔ |
Qubits | ✔ |
Full-rank higher dimension |
✘ |
-
Promising preliminary perturbative results