[["audio/rank-deficiency.ogg",[0,3767,0]]]

Rank deficiency

and the Euclidean geometry of quantum states

Jonathan A. Gross, Carlton M. Caves

Center for Quantum Information and Control, University of New Mexico

Creative Commons License

Quantum state tomography

ρ = [ ρ 11 ρ 12 ρ 1 d ρ 12 ρ 22 ρ 2 d ρ 1 d ρ 2 d 1 j ρ j j ]

Need d2 1 parameters

Rank deficiency

By Lionel Brits CC BY 3.0, Link

ρ = j = 1 r λ j | e j e j |

Rank deficiency

By Lionel Brits CC BY 3.0, Link

2 [ ( d 1 ) + ( d 2 ) + + ( d r ) ] + r 1 = r ( 2 d r ) 1

Rank deficiency

By Lionel Brits CC BY 3.0, Link

( d 2 1 ) [ r ( 2 d r ) 1 ] = ( d r ) 2

Maximum-likelihood estimation

ρ ^ = a r g m a x ρ 0 , tr [ ρ ] = 1 L ( ρ | d ) A ^ = a r g m a x A = A , tr [ A ] = 1 L ( A | d )

L ( ρ | d 1 , , d N ) = tr [ ρ E d 1 ] tr [ ρ E d N ]

Maximum-likelihood estimation

L ( ρ | d 1 , , d N ) = tr [ ρ E d 1 ] tr [ ρ E d N ]

Full-rank probability

Full-rank probability

Classical Fisher information

Euclidean metric

d s 2 d x 2 + d y 2 + d z 2 ρ I + x σ x + y σ y + z σ z

Solid angle

Solid angle

ψ = lim ε 0 vol [ B ε ψ M d ] vol [ B ε ψ ] B ε ψ = { A | A = A , tr [ A ] = 1 , A | ψ ψ | ε } M d = { ρ | ρ C d × d , ρ 0 , tr [ ρ ] = 1 }

Polar coördinates

x = r cos φ sin θ y = r sin φ sin θ z = r cos θ d s 2 = d r 2 + r 2 ( d θ 2 + sin 2 θ d φ 2 ) = d r 2 + r 2 d Ω 2

Polar coördinates

d V = d r r 2 d θ sin θ d φ = d r r 2 d Ω

Polar coördinates

d V = d r r 2 d Ω

Polar coördinates

d V = d r r 2 d Ω

Polar coördinates

d V = d r r 2 d Ω

Spectral coördinates

ρ = U Λ U

U = [ cos θ sin θ e i ϕ sin θ e i ϕ cos θ ] Λ = [ λ 1 0 0 λ 2 ]

Spectral coördinates

d V = d A 1 ( λ 1 λ 2 ) 2 d Υ 2

Spectral coördinates

d V = d A 1 ( λ 1 λ 2 ) 2 d Υ 2

Spectral coördinates

d V = d A 1 ( λ 1 λ 2 ) 2 d Υ 2

Solid angle

ψ = B M d V B d V

Higher dimensions

d V = d A d 1 j < k ( λ j λ k ) 2 d Υ d

Qutrit

Qutrit

Qutrit

Qutrit

Qutrit

d V = d A d 1 j < k ( λ j λ k ) 2 d Υ d d V = d A d 1 j < k ( λ j λ k ) 2 d Υ d 1

Qutrit

d V = d A d 1 j < k ( λ j λ k ) 2 d Υ d 1

Qutrit

vol ( shell ) = r x R d x d y d z

Qutrit

vol ( shell ) = r R d r r 2 Ω d Ω

Qutrit

d V = d A d 1 j < k ( λ j λ k ) 2

Qutrit

ψ = B Δ d V B d V

Qutrit

ψ 3 = 1 6 3 4 π = 0.0288 = Pr [ rank ( ρ ^ ) = 3 | ρ = | ψ ψ | ]

Qutrit

Pr [ rank ( ρ ^ ) = 1 | ρ = | ψ ψ | ] = 1 3 3 4 π Pr [ rank ( ρ ^ ) = 2 | ρ = | ψ ψ | ] = 1 2 + 3 2 π

Even higher dimensions

Even higher dimensions

Even higher dimensions

Even higher dimensions

Even higher dimensions

Questions?